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(Last Time) Representation Learning

Fach layer's output Is another way we could represent the input data
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Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980’s)

| There's even a patent from 961 that basically
* Big data amounts to a convolutional neural net for OCR
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LIFE CHANGING MEDICINE

 Better haraware

AMD
CPU’s
& Moore’s law GPU's

Many companies now make dedicated hardware
for deep nets (e.g., Google, Apple, Tesla)

* Better algorithms



Structure Present in Data Matters

Neural nets arent doing black magic

* Image analysis: convolutional neural networks (convnets) neatly
Incorporates basic image processing structure

* Time series analysis: recurrent neural networks (RNNs)
incorporates ability to remember and forget things over time

 Note:text Is a time series

 Note: video Is a time series



Handwritten Digit Recognition
Example

Walkthrough of 2 extremely simple neural nets



Handwritten Digit Recognition
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Handwritten Digit Recognition

welghted sums

>
(parametgrized (2D numpy array
by a weight of dimensions 784-
matrix W and a by-10)
| bias b) - (ID numpy array
W™ b with 10 entries)
length /84 vector inear layer
(/84 input nodes) with 10 nodes
input Linear

(1D numpy array with /84 entries) (ID numpy array with 10 entries)



Handwritten Digit Recognition

linear[@] = np.dot(input, W[:, O]) + b[O]
linear[1l] = np.dot(input, W[:, 1]) + b[1]
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Handwritten Digit Recognition
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Handwritten Digit Recognition

flatten welghted sums activation
> > >
(parameterized (can be
by a welight thought of as
matrix W and a pOSt-
28x28 image bias b) processing)
length /84 vector inear layer final

(/84 input nodes) with 10 nodes output



Handwritten Digit Recognition

Many different activation functions possible 4 4
3.5 3.5

Example: Rectified linear unit (ReLU) 4 4
zeros out entries that are negative R 0
0.5 RelU 0.5

>
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final = np.maximum(®, linear) , 5 ,
POST-
2 processing) 9
5 5
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with 10 nodes output
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Handwritten Digit Recognition

Many different activation functions possible 4 0.17
3.5 0.10
Example: softmax converts a table of numbers 4 0.17
into a probability distribution y 0.00
05 softmax
>
2 0.02
(can be

: * thought ofas %
exp = np.exp(linear) X 5 0,06

final = exp / exp.sum() post-
2| processing) 000
5 0.46
inear layer final

with 10 nodes output

linear final



Handwritten Digit Recognition

flatten welghted sums softmax

> >

>

(parameterized
by a weight
matrix W and a

28x28 Image bias b)

length /84 vector inear layer final
(/84 input nodes) with 10 nodes output



Handwritten Digit Recognition

Training label: 6

\4

— — — | Loss/‘error” | = error

Input

Flatten  Linear: Softmax |

|
(10 nodes) 5 “estimated Pr(digit 6)




Handwritten Digit Recognition

Training label: 6

v

—> — —_— Loss —> error

Categorical
Cross entropy

Input

Flatten: Linear Softmax
(10 nodes)



Handwritten Digit Recognition

Training label: 6

\ 4
— —> —> — — | Loss | = error
Categorical

Cross entropy

Input

Flatten Linear RelU Linear Softmax
(512 nodes) (10 nodes)



Handwritten Digit Recognition

Training label: 6

v
—> > » | Loss | = error
Categorical

Cross entropy

Input

Flatteh Linear Linear

(512 nodes), (10 nodes),
RelLU Softmax



Py Torch

* Designed to be like NumPy

* Alot of (but not all) function names are the same as numpy
(e.g., Instead of calling np. sum, you would call torch. sum, etc)

* What's the big difference then! Why not just use NumPy?

* Pylorch does not use NumPy arrays and instead uses tensors
(so Instead of np.array,you use torch.tensor)

* Pylorch tensors keep track of what device they reside on

* For example, trying to add a tensor stored on the CPU
and a tensor stored on a GPU will result in an error

* Pylorch tensors keep track of “gradient™ information
(we'll discuss more about what this means in a few lectures)

Py Torch code Is often harder to debug than NumPy code

There's a Py lorch tutorial posted in supplemental reading



Handwritten Digit Recognition

Demo



Architecting Neural Nets

Basic building block that Is often repeated:
linear layer followed by nonlinear activation

* Without nonlinear activation, two consecutive linear layers is
mathematically equivalent to having a single linear layer!

How to select # of nodes In a layer, or # of layers!
* These are hyperparameters! Infinite possibilities!

« (Can choose between different options using hyperparameter
selection strategy from earlier lectures

* Very expensive In practicel

* Much more common in practice: modify existing archrtectures
that are known to work well

(e.g., ResNet for image classification/object recognition)



Py Torch GitHub Has Lots of Examples

& github.com/pyt

PyTorch Examples

A repository showcasing examples of using PyTorch

Image classification (MNIST) using Convnets

Word level Language Modeling using LSTM RNNs

Training Imagenet Classifiers with Residual Networks

Generative Adversarial Networks (DCGAN)

Variational Auto-Encoders

Superresolution using an efficient sub-pixel convolutional neural network
Hogwild training of shared ConvNets across multiple processes on MNIST
Training a CartPole to balance in OpenAl Gym with actor-critic

Natural Language Inference (SNLI) with GloVe vectors, LSTMs, and torchtext
Time sequence prediction - use an LSTM to learn Sine waves

Implement the Neural Style Transfer algorithm on images

Several examples illustrating the C++ Frontend

Additionally, a list of good examples hosted in their own repositories:

Neural Machine Translation using sequence-to-sequence RNN with attention (OpenNMT)



Find a Massive Collection of Models at the
Model Zoo

ModelZoo

Model Zoo

Discover open source deep learning code and pretrained

models.

Browse Frameworks Browse Categories




Learning a neural net amounts to
“curve fitting”

VWe're just estimating a function



Neural Net as Function Approximation
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Multinomial logistic regression:

def f(input):
output = softmax(np.dot(input, W) + ib)

return output | x // |
the only things that we are learning

(we fix their dimensions In advance)

We are fixing what the function T looks like in code and
are only adjusting W and b!!!



Neural Net as Function Approximation

Given 1nput,learn a computer program that computes output
Multinomial logistic regression:

output = softmax(np.dot(input, W) + b)
Multilayer perceptron:

intermediate = relu(np.dot(input, W1l) + bl)
output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps inputs
(raw feature vectors) to outputs (predictions)



Complexity of a Neural Net!?

* Increasing number of layers (depth) makes neural net more
“complex”

* Learn computer program that has more lines of code
* Sometimes, more parameters may be needed

* |f so, more training data may be needed

Farlier: multinomial logistic regression had fewer parameters than multilayer
perceptron example

Upcoming: we'll see examples of deep nets with fewer
parameters than “shallower’ nets



Accounting for image structure:
convolutional neural nets
(CNNs or convnets)



Convolution

- I

Slide by Phillip Isola




Convolution
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Convolution
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lake dot product!

Convolution
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lake dot product!

Convolution
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lake dot product!

Convolution
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Convolution

lake dot product!
ololo|olo]oO
Ogl [0g Tg I | 1 ]O]O ol 1|1 11]o0
o T gl | ]!]O |
o Tg gl [0]0]0
I I I I I 0
ol1 |1 111010
ololo|olo]oO

Input iImage Output iImage



lake dot product!

Convolution
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Convolution
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Note: output image I1s smaller than input image

I you want output size to be same as input, pad O's to input



Convolution

I you want output size to be same as input, pad O's to input
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Convolution
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Convolution

Output image
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Convolution

Very commonly used for:

* Blurring an image

1/9 | 1/9 | 1/9

* (99 19| —

1/9  1/9 | 1/9

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/



