(Carnegie Mellon University

Helnz

Unstructured Data Analysis for Policy

Lecture | |: Neural nets & deep learning

George Chen

(Last Time) Representation Learning

Fach layer's output Is another way we could represent the input data

Learned
-
o
5% “clown fish”
\ O
W,
e %" . %
N e,
@ -20 - N

-40 -20 O 20 40 =50 =25 0 25 50

Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980’s)

| There's even a patent from 961 that basically
* Big data amounts to a convolutional neural net for OCR

amazoncom W K1 lgﬂ
NETFLIX * fitbit &G UPMC

LIFE CHANGING MEDICINE

 Better haraware

AMD
CPU’s
& Moore’s law GPU's

Many companies now make dedicated hardware
for deep nets (e.g., Google, Apple, Tesla)

* Better algorithms

Structure Present in Data Matters

Neural nets arent doing black magic

* Image analysis: convolutional neural networks (convnets) neatly
Incorporates basic image processing structure

* Time series analysis: recurrent neural networks (RNNs)
incorporates ability to remember and forget things over time

 Note:text Is a time series

 Note: video Is a time series

Handwritten Digit Recognition
Example

Walkthrough of 2 extremely simple neural nets

Handwritten Digit Recognition

flatten welghted sums activation
> > >
(parameterized (can be
by a welight thought of as
matrix W and a pOSt-
28x28 image bias b) processing)
length /84 vector inear layer final

(/84 input nodes) with 10 nodes output

Handwritten Digit Recognition

welghted sums

>
(parametgrized (2D numpy array
by a weight of dimensions 784-
matrix W and a by-10)
| bias b) - (ID numpy array
W™ b with 10 entries)
length /84 vector inear layer
(/84 input nodes) with 10 nodes
input Linear

(1D numpy array with /84 entries) (ID numpy array with 10 entries)

Handwritten Digit Recognition

linear[@] = np.dot(input, W[:, O]) + b[O]
linear[1l] = np.dot(input, W[:, 1]) + b[1]

|
i
i
I
; ighted sums —
| 8 linear[j]l =) input[ilxW[i,j] + b[j]
- | i=0
i (parametgrzed (2D numpy array
: by a weight of dimensions /84-
i matrix Wand a by-10)
| bias b) ~ (ID numpy array
W™ D with 10 entries)
/84 vector inear layer
put nodes) with 10 nodes
nput lLinear

-entries) (ID numpy array with 10 entries)

Handwritten Digit Recognition

welghted sums
>

(parameterized
by a weight
matrix W and a
bias b)

length /84 vector inear layer
(/84 input nodes) with 10 nodes

Handwritten Digit Recognition

flatten welghted sums activation
> > >
(parameterized (can be
by a welight thought of as
matrix W and a pOSt-
28x28 image bias b) processing)
length /84 vector inear layer final

(/84 input nodes) with 10 nodes output

Handwritten Digit Recognition

Many different activation functions possible 4 4
3.5 3.5

Example: Rectified linear unit (ReLU) 4 4
zeros out entries that are negative R 0
0.5 RelU 0.5

>
2 2
(can be
: : : * thought ofas °
final = np.maximum(®, linear) , 5 ,
POST-
2 processing) 9
5 5
inear layer final
with 10 nodes output

linear final

Handwritten Digit Recognition

Many different activation functions possible 4 0.17
3.5 0.10
Example: softmax converts a table of numbers 4 0.17
into a probability distribution y 0.00
05 softmax
>
2 0.02
(can be

: * thought ofas %
exp = np.exp(linear) X 5 0,06

final = exp / exp.sum() post-
2| processing) 000
5 0.46
inear layer final

with 10 nodes output

linear final

Handwritten Digit Recognition

flatten welghted sums softmax

> >

>

(parameterized
by a weight
matrix W and a

28x28 Image bias b)

length /84 vector inear layer final
(/84 input nodes) with 10 nodes output

Handwritten Digit Recognition

Training label: 6

\4

— — — | Loss/‘error” | = error

Input

Flatten Linear: Softmax |

|
(10 nodes) 5 “estimated Pr(digit 6)

Handwritten Digit Recognition

Training label: 6

v

—> — —_— Loss —> error

Categorical
Cross entropy

Input

Flatten: Linear Softmax
(10 nodes)

Handwritten Digit Recognition

Training label: 6

\ 4
— —> —> — — | Loss | = error
Categorical

Cross entropy

Input

Flatten Linear RelU Linear Softmax
(512 nodes) (10 nodes)

Handwritten Digit Recognition

Training label: 6

v
—> > » | Loss | = error
Categorical

Cross entropy

Input

Flatteh Linear Linear

(512 nodes), (10 nodes),
RelLU Softmax

Py Torch

* Designed to be like NumPy

* Alot of (but not all) function names are the same as numpy
(e.g., Instead of calling np. sum, you would call torch. sum, etc)

* What's the big difference then! Why not just use NumPy?

* Pylorch does not use NumPy arrays and instead uses tensors
(so Instead of np.array,you use torch.tensor)

* Pylorch tensors keep track of what device they reside on

* For example, trying to add a tensor stored on the CPU
and a tensor stored on a GPU will result in an error

* Pylorch tensors keep track of “gradient™ information
(we'll discuss more about what this means in a few lectures)

Py Torch code Is often harder to debug than NumPy code

There's a Py lorch tutorial posted in supplemental reading

Handwritten Digit Recognition

Demo

Architecting Neural Nets

Basic building block that Is often repeated:
linear layer followed by nonlinear activation

* Without nonlinear activation, two consecutive linear layers is
mathematically equivalent to having a single linear layer!

How to select # of nodes In a layer, or # of layers!
* These are hyperparameters! Infinite possibilities!

« (Can choose between different options using hyperparameter
selection strategy from earlier lectures

* Very expensive In practicel

* Much more common in practice: modify existing archrtectures
that are known to work well

(e.g., ResNet for image classification/object recognition)

Py Torch GitHub Has Lots of Examples

& github.com/pyt

PyTorch Examples

A repository showcasing examples of using PyTorch

Image classification (MNIST) using Convnets

Word level Language Modeling using LSTM RNNs

Training Imagenet Classifiers with Residual Networks

Generative Adversarial Networks (DCGAN)

Variational Auto-Encoders

Superresolution using an efficient sub-pixel convolutional neural network
Hogwild training of shared ConvNets across multiple processes on MNIST
Training a CartPole to balance in OpenAl Gym with actor-critic

Natural Language Inference (SNLI) with GloVe vectors, LSTMs, and torchtext
Time sequence prediction - use an LSTM to learn Sine waves

Implement the Neural Style Transfer algorithm on images

Several examples illustrating the C++ Frontend

Additionally, a list of good examples hosted in their own repositories:

Neural Machine Translation using sequence-to-sequence RNN with attention (OpenNMT)

Find a Massive Collection of Models at the
Model Zoo

ModelZoo

Model Zoo

Discover open source deep learning code and pretrained

models.

Browse Frameworks Browse Categories

Learning a neural net amounts to
“curve fitting”

VWe're just estimating a function

Neural Net as Function Approximation

¢ EE E I E E E E E E E E =N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NS &SN NS N NSNS NN NN NN SN NN NN N EEEm g

Multinomial logistic regression:

def f(input):
output = softmax(np.dot(input, W) + ib)

return output | x // |
the only things that we are learning

(we fix their dimensions In advance)

We are fixing what the function T looks like in code and
are only adjusting W and b!!!

Neural Net as Function Approximation

Given 1nput,learn a computer program that computes output
Multinomial logistic regression:

output = softmax(np.dot(input, W) + b)
Multilayer perceptron:

intermediate = relu(np.dot(input, W1l) + bl)
output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps inputs
(raw feature vectors) to outputs (predictions)

Complexity of a Neural Net!?

* Increasing number of layers (depth) makes neural net more
“complex”

* Learn computer program that has more lines of code
* Sometimes, more parameters may be needed

* |f so, more training data may be needed

Farlier: multinomial logistic regression had fewer parameters than multilayer
perceptron example

Upcoming: we'll see examples of deep nets with fewer
parameters than “shallower’ nets

Accounting for image structure:
convolutional neural nets
(CNNs or convnets)

Convolution

- I

Slide by Phillip Isola

Convolution

0 000 0
0 L] 0

0|00
0 o] 0

0| 1|0
0 o 0
0 L] 0 Il
0 L] 0 .

Filter

0 OO0 | (also called “kernel”)

Input Image

Convolution

0 000 0
0 L] 0

0|0 0
0 o] 0

0|1 |0
0 o 0
0 L] 0 019]°
0 L] 0 .

Filter

0 OO0 | (also called “kernel”)

Input Image

lake dot product!

Convolution

Op| 0gl [0g O | O | O] O
0ol 10 Tig ! | 1]0O]O
0ol | Tol To/ | | ! |1 |0
O[T [T |1 |0]O0]oO
oI I T O O A
ool |1 |1]o0]o
ojlolololo|o0]o0

Input iImage

Output image

lake dot product!

Convolution

0 ||0g| |0l [0g D | O | O
0 |[0][1| T I | O] O
0 [[Tol1To[ITgl | | ! | O
O| TTT[TlO0]O0]oO
oI I T O O A
ool |1 |1]o0]o
ojlolololo|o0]o0

Input iImage

Output image

lake dot product!

Convolution

0| 0 ||0g||0g|[0g O | O
0 | 0 |[Tol T [[re o | ©
0 | 1 |[TolTo[gl | | ©
O| 1| T[T1O0[0]o0
oI I T O O A
ool |1 |1]o0]o
ojlolololo|o0]o0

Input iImage

Output image

lake dot product!

Convolution

0| 0|0 |[0|0g||0g ©
0| 0| 1 |[1gl[T{[]0g 0
o | 1|1 |[TolTol Tl 1
o| 1|1 |TTo[0]o0
oI I T O O A
ool |1 |1]o0]o
ojlolololo|o0]o0

Input iImage

Output image

lake dot product!

Convolution

0| 0|00 |[Gll0gl0g
o lo | 1|1 ([1ell0]0g ol 1| 1]1]o0
o | 1|11 |[To]]To 1%
ol 1|1 |1 000
oI I T O O A
ool |1 |1]o0]o
ojlolololo|o0]o0

Input iImage

Output image

Convolution

lake dot product!
ololo|olo]oO
Ogl [0g Tg I | 1]O]O ol 1|1 11]o0
o T gl |]!]O |
o Tg gl [0]0]0
I I I I I 0
ol1 |1 111010
ololo|olo]oO

Input iImage Output iImage

lake dot product!

Convolution

O[0]0]0]0]0]O0
O 1109l ['g g ! | OO
0 IQ |I IQI | 0
0 I0 IOIQD 010
0 I I I | | 0
O] 0| | | 1 0] 0
O[]0 0,0]0]0]|O0

Input iImage

Output image

Convolution

o/olojo|ol0]|oO
olol 1|11 l0]oO ol 1|1]1]0
o X 0 T A T A R T A0 0 00 I
o/t |[t]1]lojolo| = [oef[1]|o| = |1]|1]l1]0]0O
o X T T A O T 0 0l 0 0 RN
olol 1|11 l0]oO ol 1|1]1]0
o/olojojolo]|oO

Input Image Output image

Note: output image I1s smaller than input image

I you want output size to be same as input, pad O's to input

Convolution

I you want output size to be same as input, pad O's to input

o/olo/0|0 /0|0 0O

olo/o|o|lo|olo|O0]oO ololo]o]|oO 0
olojo| 1 |1]|1]lo]o0]oO oo 1|1] 0
olo |1 1|11]l1]0]o0 0 00 o 1 [1|11 0
ool |11]lo]lOo|O0|lo| = o1 0| =1|o| 1|1]1]oO 0
olo| 11|11]l1]0]oO 0 0| 0 o 1|11 0
olojo| 1 |1]|1]lo]o0]oO oo 1|1] 0
olo/o/o|lo|olo|O0]o ololo|o]|oO 0
o/olo/o0|0 /0|0 0O

Input iImage Output image

Note: output image I1s smaller than input image

Convolution

O O O o oo | o

01010
| | |
| | |
| | O
| | |
| | |

0100

0

0

0 0 0 0
O = |0 |1 |0]| —
0 0 0 0
0

0

Input Image

O | | | | 0
| | | | |
| | | 1 0|0
| | | | |

O | | | | O

Output image

Convolution

Output image

Input Image

Convolution

O O O o oo | o

01010
| | |
| | |
| | O
| | |
| | |

0100

olo|lo|lo|lo|o|o
%
N
N
N
|

Input Image

Output image

Convolution

Very commonly used for:

* Blurring an image

1/9 | 1/9 | 1/9

* (99 19| —

1/9 1/9 | 1/9

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/

