
Unstructured Data Analysis for Policy

George Chen

Lecture 11: Neural nets & deep learning



(Last Time) Representation Learning

“clown fish”

Learned

Visualize 

(e.g., t-SNE)

Visualize

Each layer’s output is another way we could represent the input data

cla
ss

ifie
r



Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s TPU’s
CPU’s 

& Moore’s law

• Better algorithms

There’s even a patent from 1961 that basically 
amounts to a convolutional neural net for OCR

Many companies now make dedicated hardware 
for deep nets (e.g., Google, Apple, Tesla)



Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) neatly 
incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time

• Note: text is a time series

• Note: video is a time series



Handwritten Digit Recognition 
Example

Walkthrough of 2 extremely simple neural nets
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length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
by a weight 
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(1D numpy array 
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linear layer 
with 10 nodes

Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[:, 0]) + b[0]
linear[1] = np.dot(input, W[:, 1]) + b[1]

linear[j] =
783�

i=0

input[i] W[i,j]� + b[j]
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Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative
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Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: softmax converts a table of numbers 
into a probability distribution

exp = np.exp(linear) 
final = exp / exp.sum()
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length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums softmax

(parameterized 
by a weight 

matrix W and a 
bias b)

Handwritten Digit Recognition

Pr(digit 0)
Pr(digit 1)
Pr(digit 2)

Pr(digit 9)

Pr(digit 3)
Pr(digit 4)
Pr(digit 5)
Pr(digit 6)
Pr(digit 7)
Pr(digit 8)

Desired result



Input

Handwritten Digit Recognition

Linear 
(10 nodes)

Flatten Softmax

Training label: 6

Loss/“error” error
Popular loss function for 

classification: 
categorical cross entropy

Error is 
averaged across 

training 
examples

Learning this 
neural net 

means learning 
W and b

1
estimated Pr(digit 6)log

Also called 
fully-connected or dense 

layer

⚠ In PyTorch, softmax is 
included as part of the cross 

entropy loss



Input

Handwritten Digit Recognition

Linear 
(10 nodes)

Flatten Softmax

Training label: 6

Loss error
Categorical 

cross entropy

This neural net has a name: multinomial logistic regression 
(when there are only 2 classes, it’s called logistic regression)



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes)

ReLU

Training label: 6

Loss error

Learning this neural net means 
learning parameters of both 

linear layers!

Softmax

Basic building block of 
neural nets: 

linear layer with 
nonlinear activation

Linear 
(10 nodes)

Categorical 
cross entropy



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax
Important: in lecture, 
I will some times use 
this notation instead

Categorical 
cross entropy

This neural net is called a multilayer perceptron 
(# nodes need not be 512 & 10; activations need not 

be ReLU and softmax)



PyTorch
• Designed to be like NumPy

• A lot of (but not all) function names are the same as numpy 
(e.g., instead of calling np.sum, you would call torch.sum, etc)

• What’s the big difference then? Why not just use NumPy?

• PyTorch tensors keep track of what device they reside on
• For example, trying to add a tensor stored on the CPU 

and a tensor stored on a GPU will result in an error
• PyTorch tensors keep track of “gradient” information 

(we’ll discuss more about what this means in a few lectures)

• PyTorch does not use NumPy arrays and instead uses tensors 
(so instead of np.array, you use torch.tensor)

PyTorch code is often harder to debug than NumPy code

There’s a PyTorch tutorial posted in supplemental reading



Handwritten Digit Recognition

Demo



Architecting Neural Nets
• Basic building block that is often repeated: 

linear layer followed by nonlinear activation
• Without nonlinear activation, two consecutive linear layers is 

mathematically equivalent to having a single linear layer!

• How to select # of nodes in a layer, or # of layers?
• These are hyperparameters! Infinite possibilities!
• Can choose between different options using hyperparameter 

selection strategy from earlier lectures
• Very expensive in practice! 

(Active area of research: neural architecture search)
• Much more common in practice: modify existing architectures 

that are known to work well 
(e.g., ResNet for image classification/object recognition)



PyTorch GitHub Has Lots of Examples



Find a Massive Collection of Models at the 
Model Zoo



Learning a neural net amounts to 
“curve fitting”

We’re just estimating a function



Neural Net as Function Approximation

def f(input):

Given input, learn a computer program that computes output

Multinomial logistic regression:

this is a function

output = softmax(np.dot(input, W) + b)

return output
the only things that we are learning 
(we fix their dimensions in advance)

We are fixing what the function f looks like in code and 
are only adjusting W and b!!!



Neural Net as Function Approximation

output = softmax(np.dot(input, W) + b)

Given input, learn a computer program that computes output

Multinomial logistic regression:

Multilayer perceptron:

intermediate = relu(np.dot(input, W1) + b1)

output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps inputs 
(raw feature vectors) to outputs (predictions)



Complexity of a Neural Net?

• Increasing number of layers (depth) makes neural net more 
“complex”
• Learn computer program that has more lines of code
• Sometimes, more parameters may be needed

• If so, more training data may be needed

Earlier : multinomial logistic regression had fewer parameters than multilayer 
perceptron example

Upcoming: we’ll see examples of deep nets with fewer 
parameters than “shallower” nets



Accounting for image structure: 
convolutional neural nets 

(CNNs or convnets)



filter

Slide by Phillip Isola

Convolution



Convolution
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Convolution
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Convolution
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Convolution
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Convolution
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Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input
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Convolution
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Convolution
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Convolution
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Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for :
• Blurring an image

• Finding edges

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/


